A finite-dimensional integrable system associated with a polynomial eigenvalue problem

نویسندگان

  • Taixi Xu
  • Weihua Mu
  • Zhijun Qiao
چکیده

M. Antonowicz and A. P. Fordy (1988) introduced the second-order polynomial eigenvalue problem Lφ = (∂2 +∑i=1 viλ)φ = αφ (∂ = ∂/∂x, α = constant) and discussed its multi-Hamiltonian structures. For n= 1 and n= 2, the associated finite-dimensional integrable Hamiltonian systems (FDIHS) have been discussed by Xu and Mu (1990) using the nonlinearization method and Bargmann constraints. In this paper, we consider the general case, that is, n is arbitrary, provide the constrained Hamiltonian systems associated with the above-mentioned second-order polynomial ergenvalue problem, and prove them to be completely integrable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neumann and Bargmann Systems Associated with an Extension of the Coupled KdV Hierarchy

Zhimin JIANG Department of Mathematics, Shangqiu Teachers College, Shangqiu 476000, China Received October 16, 1998; Accepted December 03, 1998 Abstract An eigenvalue problem with a reference function and the corresponding hierarchy of nonlinear evolution equations are proposed. The bi-Hamiltonian structure of the hierarchy is established by using the trace identity. The isospectral problem is ...

متن کامل

Numerical simulation of three dimensional pyramid quantum dot

We present a simple and efficient numerical method for the simulation of the three-dimensional pyramid quantum dot heterostructure. The pyramid-shaped quantum dot is placed in a computational box with uniform mesh in Cartesian coordinates. The corresponding Schr€ odinger equation is discretized using the finite volume method and the interface conditions are incorporated into the discretization ...

متن کامل

Integrability of the Reduction Fourth-Order Eigenvalue Problem

To study the reduced fourth-order eigenvalue problem, the Bargmann constraint of this problem has been given, and the associated Lax pairs have been nonlineared. By means of the viewpoint of Hamilton mechanics, the Euler-Lagrange function and the Legendre transformations have been derived, and a reasonable Jacobi-Ostrogradsky coordinate system has been found. Then, the Hamiltonian cannonical co...

متن کامل

R-matrix for a geodesic flow associated with a new integrable peakon equation

We use the r-matrix formulation to show the integrability of geodesic flow on an N -dimensional space with coordinates qk, with k = 1, ..., N , equipped with the co-metric gij = e−|qi−qj |(2 − e−|qi−qj |). This flow is generated by a symmetry of the integrable partial differential equation (pde) mt + umx + 3mux = 0, m = u − αuxx (α is a constant). This equation – called the Degasperis-Procesi (...

متن کامل

Analysis of Natural Frequencies for a Laminated Composite Plate with Piezoelectric Patches using the First and Second Eigenvalue Derivatives

In this paper, the first and second order approximations of Taylor expansion are used for calculating the change of each natural frequency by modifying an arbitrary parameter of a system with a known amount and based on this approximation, the inverse eigenvalue problem is transformed to a solvable algebraic equation. The finite element formulation, based on the classical laminated plate theory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006